Va rugam dezactivati programul ad block pentru a vizualiza pagina!

Cumpara abonament!
Plateste cu PayPal

Proprietăţile mişcării oscilatorii armonice. Pendulul gravitaţional.

Partajeaza in Google Classroom

Partajeaza cu Google Classroom
Susține Lectii-Virtuale!

Teorie: Proprietățile mișcării oscilatorii armonice. Pendulul gravitațional. Descarcă PDF

Proprietățile mișcării oscilatorii armonice. Pendulul gravitațional.

Proprietățile mișcării oscilatorii armonice

Ecuațiile mișcării oscilatorii aduse la formă sinusoidală sunt:

y open parentheses t close parentheses equals A sin open parentheses omega t plus phi subscript 0 close parentheses - legea mișcării;

v open parentheses t close parentheses equals omega A cos open parentheses omega t plus phi subscript 0 close parentheses equals omega A sin open parentheses omega t plus phi subscript 0 plus pi over 2 close parentheses - legea vitezei;

a open parentheses t close parentheses equals negative omega squared A sin open parentheses omega t plus phi subscript 0 close parentheses equals omega squared A s i n open parentheses omega t plus phi subscript 0 plus pi close parentheses - legea accelerației.

Putem observa că viteza este defazată înainte cu π/2 radiani, iar accelerația este defazată înainte cu π radiani față de elongație.

Energia oscilatorului liniar armonic

Energia oscilatoruli este egală cu suma dintre energia cinetică și energia potențială.

E subscript c equals fraction numerator m v squared over denominator 2 end fraction equals m over 2 omega squared A squared cos squared open parentheses omega t plus phi subscript 0 close parentheses
E subscript p equals fraction numerator k y squared over denominator 2 end fraction equals k over 2 A squared sin squared open parentheses omega t plus phi subscript 0 close parentheses

Însumând, rezultă că energia totală a oscilatorului armonic este constantă:

E equals fraction numerator m omega squared A squared over denominator 2 end fraction equals fraction numerator k A squared over denominator 2 end fraction

Pendulul gravitațional

Pendulul gravitațional este un ansamblu format dintr-un corp punctiform de masă m, atârnat de un fir inextensibil, de masă neglijabilă și lungime l. Dacă corpul este scos din poziția de echilibru și lăsat liber, pentru unghiuri mici de deviație el va oscila liniar armonic cu perioada de oscilație:

T equals 2 pi square root of l over g end root

Cumpara abonament
Plătește cu PayPal

Ajutor
Feedback-ul d-voastră este important pentru noi. Dacă observați vreo neregulă vă rugăm să ne-o semnalați apăsând butonul Trimite Feedback de mai jos.

Despre Lecții-Virtuale.ro

Lecții-Virtuale este o platformă educațională care oferă suport în vederea pregătirii pentru Evaluare Națională și Bacalaureat la Matematică, Fizică și Chimie. Lecțiile noastre sunt alcătuite din filme și exerciții și probleme cu tot cu rezolvări. Platforma noastră este o soluție ideală pentru școala online. Pentru facilitarea activității profesorilor în cadrul ecosistemului GSuite de la Google am implementat butonul Google Classroom. Scopul nostru este să ne concentrăm pe prezentarea noțiunilor și fenomenelor într-o manieră care să stimuleze înțelegerea și nu memorarea mecanică. Ne propunem să facilităm accesul la conținut educațional de calitate mai ales elevilor cu venituri mai modeste care nu își pemit meditații particulare. Sperăm să vă simțiti bine alături de noi și să invățați lucruri folositoare. Hai România!

Newsletter

Abonează-te la Newsletter pentru a fi la curent cu toate ofertele noastre.

Parteneri

EduApps partener Lectii Virtuale UiPath partener Lectii Virtuale Scoala365 partener Lectii Virtuale CCD Galați partener Lectii Virtuale

2024 © Lecții-virtuale.ro Toate drepturile rezervate
Termeni   Despre   Contact   Confidenţialitate   Cariere Parteneri