Va rugam dezactivati programul ad block pentru a vizualiza pagina!

Cumpara abonament!
Plateste cu PayPal

Modulul unui număr rațional

Partajeaza in Google Classroom

Partajeaza cu Google Classroom
Susține Lectii-Virtuale!
Pentru a putea vizualiza un video va rugam sa va logati aici! Daca nu aveti cont va puteti inregistra apasand aici.
6 voturi 201 vizionari
Puncte: 10

Transcript



valoarea absolută sau modulul unui

număr rațional este distanță măsurată

pe axa numerelor între origine

și punctul corespunzător numărului

rațional de exemplu valoarea absolută

a numărului 3 supra 2 va fi distanța

de la origine până la punctul a

și aceasta va fi egală cu 3 supra

2 scrie că modulul numărului 3

supra 2 este egal cu 3 supra 2

iar valoarea absolută a numărului

minus 3 supra 2 este lungimea segmentului

o a prim și aceasta este de asemenea

egală cu 3 supra 2 modulul numărului

minus 3 supra 2 este egal cu 3

supra 2 având în vedere că valoarea

absolută este o distanță iar va

fi întotdeauna un număr pozitiv

în general valoarea absolută a

unui număr rațional a este minus

A dacă A este negativ unde e prin

minus a înțelegem opusul numărului

a valoarea absolută este 0 dacă

a este egal cu 0 și valoarea absolută

a lui a este chiar A dacă A este

un număr pozitiv de exemplu valoarea

absolută a numărului minus 3 supra

2 va fi minus minus 3 supra 2 având

în vedere că a minus 3 supra 2

este negativ valoarea absolută

a se este minus minus 3 supra 2

și am văzut aceasta este egală

cu 3 supra 2 modulul numărului

zero este zero și modulul numărului

5 supra 6 este 5 supra 6 pentru

ca Acesta este un număr pozitiv

să vedem în continuare câteva proprietăți

ale modulului O primă proprietate

valoarea absolută a numărului a

este întotdeauna a mai mare sau

egal decât 0 Oricare ar fi a un

număr rațional mod la proprietate

modulul numărului minus a este

egal cu modulul numărului a Oricare

ar fi a un număr rațional am văzut

în primul exemplu că valoarea absolută

a lui minus 3 supra 2 este egală

cu valoarea absolută a lui 3 supra

2 și o altă proprietate valoarea

absolută a produsului a ori b este

egală cu valoarea absolută a numărului

a înmulțită cu valoarea absolută

a numărului b pentru oricare două

numere raționale a și b de exemplu

valoarea absolută a produsului

1 supra 2 ori 3 supra 5 este egală

cu valoarea absolută a numărului

1 supra 2 ori valoarea absolută

a numărului 3 supra 5 putem face

calculele în continuare și obținem

1 supra 2 ori 3 supra 5 egal cu

3 supra 10 să mai dăm câteva exemple

modulul numărului minus 3 supra

8 va fi minus minus 3 supra 8 și

egal cu 3 supra 8 Al doilea exemplu

valoarea absolută a numărului plus

2 supra 9 este egală cu 2 supra

9 modulul numărului minus 3 Putem

să scriem direct egal cu 3 iar modulul

numărului rațional 8 va fi egal

8

Valoarea absolută a unui număr raționalAscunde teorie X

Valoarea absolută sau modulul unui număr rațional este distanța, măsurată pe axa numerelor, de la origine până la numărul rațional respectiv.

Exemple:

open vertical bar 3 over 5 close vertical bar equals 3 over 5
open vertical bar negative 2 over 7 close vertical bar equals 2 over 7
open vertical bar negative 3 comma 15 close vertical bar equals 3 comma 15

În general, modulul unui număr rațional a este:

open vertical bar a close vertical bar equals space left enclose space minus a comma space a less than 0
space space space space space 0 comma space a equals 0
space space space space space a comma space a greater than 0 end enclose

Proprietăți ale modulului

1. space open vertical bar a close vertical bar greater or equal than 0 comma space for all a element of straight rational numbers
2. space open vertical bar negative a close vertical bar equals open vertical bar a close vertical bar comma space for all a element of straight rational numbers
3. space open vertical bar a b close vertical bar equals open vertical bar a close vertical bar times open vertical bar b close vertical bar comma space for all a comma b element of straight rational numbers.

 

Navigare în lectii

Cumpara abonament
Plătește cu PayPal

Ajutor
Feedback-ul d-voastră este important pentru noi. Dacă observați vreo neregulă vă rugăm să ne-o semnalați apăsând butonul Trimite Feedback de mai jos.

Despre Lecții-Virtuale.ro

Lecții-Virtuale este o platformă educațională care oferă suport în vederea pregătirii pentru Evaluare Națională și Bacalaureat la Matematică, Fizică și Chimie. Lecțiile noastre sunt alcătuite din filme și exerciții și probleme cu tot cu rezolvări. Platforma noastră este o soluție ideală pentru școala online. Pentru facilitarea activității profesorilor în cadrul ecosistemului GSuite de la Google am implementat butonul Google Classroom. Scopul nostru este să ne concentrăm pe prezentarea noțiunilor și fenomenelor într-o manieră care să stimuleze înțelegerea și nu memorarea mecanică. Ne propunem să facilităm accesul la conținut educațional de calitate mai ales elevilor cu venituri mai modeste care nu își pemit meditații particulare. Sperăm să vă simțiti bine alături de noi și să invățați lucruri folositoare. Hai România!

Newsletter

Abonează-te la Newsletter pentru a fi la curent cu toate ofertele noastre.

Parteneri

EduApps partener Lectii Virtuale UiPath partener Lectii Virtuale Scoala365 partener Lectii Virtuale CCD Galați partener Lectii Virtuale

2024 © Lecții-virtuale.ro Toate drepturile rezervate
Termeni   Despre   Contact   Confidenţialitate   Cariere Parteneri